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Nowadays, with the continuous increase in internet traffic, the demand for real-time and high-speed traffic analysis has grown
significantly. However, existing traffic analysis technologies are either limited by specific applications or data, unable to expand
for widespread implementation, or in offline mode are unable to keep up with dynamic adjustments required in certain network
management scenarios. A promising approach is to utilize sketch technology to enhance real-time traffic analysis. Unfortunately,
existing technologies suffer from defects, such as overly coarse-grained statistics that cannot perform precise application-level traffic
analysis, and irreversibility, which cannot support real-time queries in a friendly way. To achieve real-time fine-grained application
traffic analysis in general scenarios, we propose AppSketch, a real-time network traffic measurement tool. AppSketch adopts a one-
pass approach to classify and label the application information of each packet in the network flows. It then hashes the flow, identified
with the application tag, into a carefully designed multiple-key sketch, for gathering application-specific statistics. We conducted
extensive experiments using a real-world network traffic dataset collected on a university campus. The results showed that AppSketch
achieved high accuracy while requiring less update time than other alternatives. Moreover, AppSketch occupies limited memory
(≤64KB), making it suitable for online network devices.
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1. INTRODUCTION
The internet carries a variety of traffic at all times, including
financial transactions, e-commerce, entertainment and more [1–
3]. Due to the massive volume of network traffic, it has been
reported that each link in large internet service providers (ISPs) or
data centers handles millions of packets per second [4–7]. Real-
time and high-speed traffic analysis, such as identifying traffic
trends, application proportions and flow sizes, is critical for ISPs
or companies to optimize their network management and ensure
high-quality service (QoS). Moreover, network attacks are often
hidden in massive legitimate and benign traffic to evade detection
by defense mechanisms [8]. Despite the continuous improvement
in accuracy and efficiency of existing attack traffic detection
methods [8, 9], due to the lack of fine-grained analysis for traf-
fic, they are still unable to cope with the emerging adversarial
attack traffic generation technologies [10–12]. Multidimensional
and fine-grained traffic analysis can provide insights for more
refined traffic attack detection.

The existing traffic analysis techniques can be primarily classi-
fied into two modes: offline and online. Developed traffic analysis
technologies, such as those based on Deep Packet Inspection
(DPI) and machine learning, are almost offline. DPI is a traffic
monitoring and analysis technology that involves inspecting all
packet payloads to match application signatures, resulting in
high computational overhead. Given the continuous improve-
ment of the packet processing capability of network equipment,
it becomes increasingly challenging for DPI-based technology to
match the line rate [13]. Most machine learning-based methods
require training the model offline, which leads to the inability to

perform real-time analysis on the traffic [14]. Some rapid machine
learning classification techniques provide near real-time traffic
analysis capabilities [15, 16]; however, the study focuses on spe-
cific applications and may not be suitable for effectively handling
the broader spectrum of application traffic. For online traffic
analysis, researchers realize real-time network traffic monitoring
through software-defined networking (SDN) and network func-
tion virtualization (NFV) technologies [17] or realize online flow
calculation through hardware acceleration [18]. However, these
methods still have some concerns. For example, network traf-
fic monitoring collects comprehensive traffic data, which poses
privacy risks; is only applicable to SDN scenarios and cannot
be deployed in non-SDN networks; and hardware acceleration is
customized and can only be used for specific data, such as dense
(non-sparse) correlation matrices, and thus is not scalable.

Real-time traffic analysis is essential in order to allocate net-
work resources efficiently and provide per-flow QoS [15, 19]. One
natural approach is to use sketch technology for real-time traf-
fic statistics. However, there are some challenges in integrating
sketch technology into application traffic analysis.

One challenge is that existing sketch-based algorithms are still too
coarse-grained to provide detailed statistics on applications and sources
[20]. While related works, such as FlexSketchMon [21], focus
on implementing generalized traffic estimation techniques like
superspreader detection and heavy hitter detection, they often
lack the ability to enable more precise application-level traffic
analysis. Another challenge is reversibility, as traffic analysis from the
application point of view requires sketches to be reversible. Classic
sketches such as Count-min Sketch [22] are irreversible and
cannot support real-time queries in a friendly way. This makes
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it difficult to recover all heavy flows from only the sketch data
structure itself, and instead, a computationally expensive brute-
force approach must be used to query every possible flow to check
whether it is a heavy flow.

In this work, we propose a novel sketch framework called AppS-
ketch, designed for application traffic analysis. The framework
utilizes lightweight classification of traffic and sketch techniques
to enable real-time and fine-grained traffic analysis, including
identifying top-k traffic consumption apps and top-k source IP
of traffic requests. Firstly, AppSketch quickly classifies network
traffic according to the application type, assigning each packet
in the online stream with an application tag. It then employs a
novel multiple-key sketch to enable efficient full-key and arbi-
trary partial-key queries. By specifying a full key (incorporating
all partial keys that might be queried in the future), AppSketch
supports querying for aggregate flows defined by both full and
partial keys. For example, by specifying a tuple consisting of an
application tag and a source IP as the full key, AppSketch can per-
form top-k flows, top-k applications and top-k source IP queries.
To achieve reversibility and perform partial key queries efficiently,
AppSketch records a full key within the bucket and updates the
recorded key using the random variance minimization technique.
In summary, our work makes the following contributions:

1. Our work proposes a novel sketch framework, named AppS-
ketch, which combines lightweight traffic classification with
sketch techniques to enable fast and accurate traffic statis-
tics and analysis at a fine-grained level.

2. To evaluate the performance of AppSketch, we conducted
experiments on real-world IP-trace streams. The results
demonstrate the superior accuracy and efficiency of
AppSketch compared with existing methods. We also applied
AppSketch to analyze the main applications and sources
in a real campus network from China. The findings reveal
that HTTP/HTTPS and audio/video applications account for
the majority of traffic, and most heavy sources interact
with data centers, possibly involving the acquisition of
experimental data.

The rest of the paper is organized as follows: Section 2 discusses
the background and related work. Section 3 describes the design
of AppSketch. Section 4 presents the flow statistics and related
query operations. Section 5 evaluates the performance of AppS-
ketch. We show a use case in Section 6 and Section 7 concludes
this work.

2. BACKGROUND AND RELATED WORK
2.1. Lightweight Packet Inspection
Currently, traffic classification techniques can be broadly clas-
sified into three categories: port-based, machine learning-based
[23] and payload-based techniques. The port-based approach is
widely considered inadequate since many applications do not use
a well-defined port [24]. While machine learning-based methods
generally offer high accuracy, they often rely on offline training,
which cannot meet the real-time demands of traffic classification.
To overcome this limitation, researchers have explored the use of
rapid machine learning classification techniques, such as the
C4.5 Decision Tree [15]. These techniques provide near real-time
traffic analysis capabilities. However, it is important to note that
the study [15] focuses on classifying specific applications such as
online games and VoIP applications, and may not be suitable
for effectively handling the broader spectrum of application
traffic. Consequently, most traffic classifiers rely on

payload-based approaches using DPI (e.g. OpenDPI [25] and
L7-Filter [26]) or Layer 7 Protocol Identification (LPI) (e.g.
Libprotoident [24]). The DPI approach can achieve accurate traffic
classification, but it suffers from high computational overhead
and poses an increased risk of user privacy disclosure, as it
requires access to the entire payload of each packet.

Instead of analyzing the entire payload, the LPI approach
reduces the inspection of packet content to improve efficiency
while maintaining relatively high classification accuracy. Among
the LPI approaches, the Libprotoident [24] library achieves even
higher accuracy than DPI approaches, as demonstrated in several
previous studies [27, 28]. The Libprotoident library identifies the
application protocol by analyzing the first four bytes of payload
from a few packets, the size of the first packet sent in each
direction and the port numbers used by each endpoint [29]. In our
work, we utilize the Libprotoident library for traffic classification.

2.2. Sketch-based Approximate Algorithms
Sketches are stream data aggregation structures that track values
in a fixed number of buckets. Classical sketches (e.g. Count Sketch
[30], K-ary Sketch [31] and Count-min Sketch [22]) linearly project
stream data into spaces with lower dimensions yet maintain the
aggregation characteristics of the data. Take Count-min Sketch
[22] as an example, which constructs the sketch as w rows and
h buckets in each row. Each bucket is associated with a counter
initialized as 0. At the timestamp t, for the incoming key-value
pairs, e.g. (x, f ; t), it hashes x into a bucket in each of the w rows
using w pairwise independent hash functions. Then it increases
the counter in each of the w buckets by f . Since hash collisions
will result in multiple keys being projected into the same bucket.
To this end, Count-min Sketch uses the minimum value in the
buckets mapping to key x as the estimated value.

Several recent studies have focused on improving the sketch
structure to address issues such as low packet processing rates
and poor flow estimation accuracy. For example, SketchVisor [32]
redirects high traffic loads that traditional sketch solutions can-
not handle to a separate fast path, enabling fast but slightly less
accurate measurements. Elastic Sketch [33] proposes techniques
for compressing/merging sketches to improve their adaptability to
bandwidth, packet rate and flow size distribution. NitroSketch [34]
reduces per-packet CPU and memory operations through sam-
pling on counter arrays, adaptive sampling and other methods.
PR-Sketch [35] divides flow tracking into update and recovery
phases to achieve distributed updates and centralized recov-
ery. Other approaches, such as SeqSketch, EmbedSketch [36] and
LightGuardian [37], have also been proposed. However, our work
focuses on real-time and partial-key query features for fine-
grained traffic analysis.

In recent years, there have been various efforts to address the
frequent items (or hot items) query problem and to implement
reversible sketches. For example, Cold Filter (CF) [38] proposes
a meta-framework that captures cold items in the first stage
and hot items in the second stage, which can be combined with
Space-Saving [39] to record frequent items. HeavyGuardian [40]
divides each bucket into a heavy part and a light part and uses
exponential decay technology to separate hot items from cold
items. WavingSketch [41] is an unbiased estimation algorithm for
finding frequent items that divides the bucket into a counter and
a heavy part, and keeps track of frequent items by continuously
updating the heavy part list.

In addition to efforts aimed at single-key queries, Unbiased
Space Saving (USS) [42] provides solutions to the arbitrary
partial-key query problem. Unfortunately, the update latency of
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Figure 1. The framework of AppSketch.

USS grows proportionally with the number of recorded flows.
CocoSketch [43] proposes random variance minimization to
reduce the per-packet update delay. DMatrix [44] is designed to
be three-dimensional to capture flow information from multiple
dimensions, while a field is reserved in each bucket for the key of
interest, reducing the computational cost of key recovery with an
acceptable memory overhead.

Furthermore, the Chinese Remainder Theorem based Reversible
Sketch (CRT-RS) [45] and ExtendedSketch [46] implement
reversible queries based on the Chinese remainder theorem.
However, the effectiveness of these two methods is highly
dependent on the correct configuration of parameters, which
limits their applicability and scalability.

3. APPSKETCH DESIGN
AppSketch is a sketch framework that supports lightweight and
real-time network traffic analysis. The main designing goals
of AppSketch are as follows: (1) Rapid traffic classification:
AppSketch adopts lightweight packet inspection (LPI) technology
to implement online traffic classification to support fine-grained
traffic analysis. (2) Real-time traffic analysis: AppSketch is
designed to be reversible, different from the traversal and module
hash techniques; it can readily return all heavy keys (e.g. the
top-k traffic consumption applications) from the sketch structure
itself, thereby improving the real-time performance of traffic
analysis. (3) Multiple key queries: AppSketch supports queries
for multiple keys without the need to pre-define which keys need
to be measured.

3.1. Overview on AppSketch
AppSketch is a two-stage framework for application traffic anal-
ysis shown in Fig. 1. In the first stage, we adopt LPI techniques
to quickly classify online flows, assigning each packet an appli-
cation tag and its packet size. In the first stage, application-layer
network traffic classification is performed on the network flow.
For bidirectional flow, LPI extracts some fields of IP header and
transport layer header, and a small amount of payload, to grasp
the information of flows in terms of port, payload, statistical char-
acteristics and support network traffic classification. LPI labels
each packet with the application type and packet size. Combined
with the directly obtained 5-tuple, AppSketch forms a 7-tuple for
each packet (i.e. source IP, destination IP, source port, destination
port, protocol, application and packet size). In the second stage,
each 7-tuple is hashed into a multiple-key sketch. Multiple-key

sketch supports queries for both full key and arbitrary partial
keys. By specifying only a full key (incorporating all partial keys
that might be queried in the future), sketch supports queries for
aggregate flows defined by arbitrary keys. Here, a full key contain
all the elements that define the flow, while a partial key only
contain part of elements. For example, if we specify a 5-tuple
<source IP, destination IP, source port, destination port, protocol>
as a full key, then <source IP, source port> and <destination IP,
destination port> are both partial keys.

Figure 1 shows the structure of AppSketch which is composed
of d bucket arrays, each containing l buckets, namely a total of
d × l buckets. The hash function Hash(·) defines a mapping of a
full key (e.g.

〈
App, SIP, DIP

〉
) from its key space to a hash value

(e.g. Hash(
〈
App, SIP, DIP

〉
)). A full key can be any combination of

elements that can define a flow (e.g. 5-tuple, application tag, etc.).
Since the definition of the full key can be arbitrary and depends
on different analysis objectives, in the following elaboration of this
paper,

〈
App, SIP

〉
is used as the full key to illustrate the operations.

The operations of other defined full keys are similar. In the second
stage, AppSketch uses the d hash functions to select a bucket in
each bucket array to form a list of d buckets. Then, AppSketch
performs the update process.

3.2. Sketch Update
To realize the reversibility of AppSketch, each bucket is divided
into two fields. The first field Full Key records the candidate key
of possible heavy flow, and the second field Value records the
statistics (e.g. packet count or byte count) of the flow. For more
granular traffic analysis, AppSketch is designed to better support
partial key queries (e.g. queries for top-k traffic consumption
apps, top-k sources of traffic requests, etc.).

AppSketch utilizes the stochastic variance minimization tech-
nique in CocoSketch [43] to achieve more accurate partial key
queries. Specifically, AppSketch uses d hash functions to select
a bucket in each array to form a list containing d buckets. Then,
AppSketch traverses this list and checks whether the key of the
incoming flow matches the Full Key field of a bucket. If the key
of the incoming flow matches the Full Key field in one of the d
buckets, the Value field of the corresponding bucket is updated.
If the incoming flow does not match any of the records in the d
buckets, AppSketch selects the bucket with the Value field being
the minimum of the d buckets and updates it. The value of
the incoming flow is accumulated to the minimum bucket, and
the Full Key field of that bucket is replaced with the key of the
incoming flow according to a probability.
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Figure 2. Sketch Update Process.

Assume that the full key of the incoming flow is Keyi =
(
〈
Appi, SIPi

〉
), and the corresponding value is ω. Figure 2 shows the

detailed process of updating sketch. First, AppSketch uses a set of
d hash functions and the key Keyi of the incoming flow to form a
bucket list from the d × l bucket arrays. Then, AppSketch traverses
this list and compares the incoming flow with the records in the
bucket list one by one. If Keyi matches the Full Key field in the d
buckets (suppose the value in this bucket is Vi), the Value field of
the bucket is updated to Vi + ω. If it does not match, AppSketch
selects the bucket with the minimum value in the d buckets, and
the full key and value of the minimum bucket are Keymin and Vmin,
respectively. Then, the Value field is updated to Vmin + ω, and the
Full Key field is replaced with Keyi with probability ω/(Vmin + ω).

Unlike single-key sketch which seeks to minimize the
maximum estimation error on individual keys, AppSketch aims
to minimize the estimation error of a subset sum, i.e. minimize∑

Key

(
V(Key) − V̂(Key)

)2
. Since a partial key query is actually

querying for an aggregated result of a certain subset of all flows,
minimizing the subset sum estimation error makes AppSketch
guarantee the accuracy of partial key queries.

Algorithm 1. Sketch Update

Input: Stream S
Output: Updated AppSketch B

1: for s(SIP, DIP, SPort, DPort, Pro, App, ω)∈ Stream S do
2: Valuemin = MAX,imin = 0,jmin = 0
3: for i = 1 to d do
4: j = Hashi(

〈
App, SIP

〉
)

5: if B(i, j).Full_Key == 〈
App, SIP

〉
then

6: B(i, j).Value + = ω

7: return
8: else
9: if B(i, j).Value <Valuemin then

10: Valuemin=B(k, i).Value
11: imin = i
12: jmin = j
13: end if
14: end if
15: end for
16: B(imin, jmin).Value + = ω

17: if random()%B(imin, jmin).Value<ω then
18: B(i, j).Full_Key = 〈

App, SIP
〉

19: end if
20: end for

As shown in Algorithm 1, the process of updating AppSketch
is fairly straightforward. For each incoming tuple (abbreviated as
s(SIP, DIP, SPort, DPort, Pro, App, ω)), we first initialize Valuemin, imin

and jmin (Line 2). Next, we compute the index of its mapping

bucket B(i, j) where j = Hashi(
〈
App, SIP

〉
), i ∈ [1, d] (Line 4). Then we

check if
〈
App, SIP

〉
matches the Full Key field of bucket B(i, j). If

B(i, j).Full_Key == 〈
App, SIP

〉
, we increase the Value field of B(i, j) by

ω (Lines 5–7). Otherwise, we check if B(i, j) is the bucket with a
smaller value, and if so, we record the minimum value and the
coordinates of the minimum bucket (Lines 8–13). After traversing
d buckets, if

〈
App, SIP

〉
does not match the Full Key field of any

bucket, then we update the minimum bucket. We increase ω to
the Value field of the minimum bucket, and then, we obtain a
random number by random() and update the Full Key field of the
minimum bucket to

〈
App, SIP

〉
with probability ω/B(imin, jmin).Value

(Lines 16–19).

4. FLOW STATISTICS AND QUERY
OPERATIONS
AppSketch supports full key query and arbitrary partial key query,
mainly including: (1) the requested network flow, (2) the top-k
heavy-flows, (3) the top-k heavy-applications and (4) the top-k
heavy-sources. We use heavy-applications (resp. heavy-sources)
here refer to heavy-hitter on apps (resp. IP addresses) in the
stream data. In the following text, we will describe the algorithms
for calculating these statistics in more detail.

Algorithm 2. Query for Network Flow

Input: Querying flow
〈
App, SIP

〉
Output: Size estimation Ṽ(

〈
App, SIP

〉
) of flow

〈
App, SIP

〉
1: for i = 1 to d do
2: j = Hashi(

〈
App, SIP

〉
)

3: if B(i, j).Full_Key == 〈
App, SIP

〉
then

4: return B(i, j).Value
5: end if
6: end for
7: return 0

4.1. Network Flow Query
The query operation on the size of a certain flow is shown in
Algorithm 2. For a flow determined by the application tag App and
the source IP address SIP in the network, we calculate the esti-
mated value Ṽ(

〈
App, SIP

〉
) of the flow size V(

〈
App, SIP

〉
). According

to the full key
〈
App, SIP

〉
of the queried flow, in each bucket array,

AppSketch checks the Full Key field of the bucket determined by
the hash function Hashi(·) (Line 3). If it matches, the value of the
Value field of that bucket is returned (Line 4). After traversing d
buckets, if

〈
App, SIP

〉
does not match the Full Key field of any bucket,

an estimate of 0 is returned (Line 7).
Here, AppSketch achieves unbiased estimation, which can be

elucidated by analyzing the update sketch process. Supposing
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(Keyi, w) is the t-th incoming packet, let f̂ t(x) denote the
estimated size of flow x before the t-th insertion. We demonstrate
unbiasedness by showing that for records in buckets, the expected
increment is w if x == Keyi, and 0 otherwise. For the case
x == Keyi, if x has been recorded, the estimated size increases
accordingly by w. If x is not recorded, an increase in the
estimated size of flow x only occurs when the Full Key field of
the minimum bucket is replaced, with an expected increment of
(Vmin + w) × w/(Vmin + w) = w. For the case x �= Keyi, the estimated
size of flow x changes unawares only when x has been recorded
in the minimum bucket among the bucket list, with an expected
increment of (f̂ t(x) + w) × f̂ t(x)/(f̂ t(x) + w) − f̂ t(x) = 0. Therefore,
the query results of flow x is an unbiased estimation. Algorithm
2 reveals that AppSketch underestimates the value of flows that
are not in the sketch to 0. Since AppSketch achieves unbiased
estimation using the stochastic variance minimization technique,
AppSketch overestimates the flows that are in the sketch.

We roughly estimate the time complexity of the query opera-
tion by counting the number of bucket accesses. Clearly, the time
complexity to estimate the weight of a certain flow is �(d). Note
that the time complexity here refers to querying only one flow.
When performing multiple queries (or querying multiple flows),
consider the number of queries Nquery, i.e. �(d · Nquery).

Algorithm 3. Query for Top-k Heavy-flows

Input: Querying number K
Output: Top-k heavy-flows Lf low

1: Lf low = 0
2: for i = 1 to d do
3: for j = 1 to l do
4: Lf low ← (B(i, j).Full_Key, B(i, j).Value)
5: end for
6: end for
7: ReorderAndTruncate(Lf low)

8: return Lf low

4.2. Top-k Heavy-flows
Algorithm 3 shows the query operation on top-k heavy-flows.
We first initialize a list Lf low (Line 1). Then we traverse the
entire bucket arrays, inserting the full keys and values stored in
each bucket into the list Lf low (Lines 2–6). Finally, the list Lf low

is reordered and truncated (or complemented) in descending
order of the values (Line 7). Note that the truncation or
complementation here is based on the relationship between the
number of buckets d × l and the requested K. If d × l < K, since
AppSketch cannot return a sufficient number of heavy flows,
the list Lf low is complemented with the default value (Null, 0).
Otherwise, the list Lf low is truncated to be of length K.

The time complexity of traversing the bucket array is �(dl).
Then, we consider the process of reordering and truncating, which
uses the Quicksort algorithm (the time complexity of sorting a list
with n elements is O(n · log(n))). After traversing the bucket array,
the list Lf low contains d × l elements. Therefore, the time complex-
ity of the reordering and the truncating process is O(dl · log(dl)).
Therefore, the time complexity of querying the top-k flows is
�(dl · log(dl)).

4.3. Top-k Heavy-applications
Top-k heavy-applications mean the top-k applications that con-
sume the most traffic among the active applications on the
network. Video applications are usually heavy applications, since

the video files are large and consume a lot of network bandwidth
resources during transmission. In addition, P2P applications and
file-sharing applications are frequently used by people, and there-
fore generate a lot of traffic. Furthermore, voice communication
applications and life assistance software unconsciously consume
a lot of traffic.

Algorithm 4. Query for Top-k Heavy-applications

Input: Querying number K
Output: Top-k heavy-applications Lapp

1: Lapp = 0
2: for i = 1 to d do
3: for j = 1 to l do
4: Lapp ← (B(i, j).Full_Key.App, B(i, j).Value)
5: end for
6: end for
7: ReorderAndTruncate(Lapp)

8: return Lapp

Algorithm 4 shows the query operation on top-k heavy-
applications. The query for top-k heavy-applications is similar
to the query for top-k heavy-flows. After initializing list Lapp, we
traverse the entire bucket arrays and insert the corresponding
key-value pairs into list Lapp. Note that here we extract the corre-
sponding partial key, i.e. App, and insert the partial key and value
into list Lapp. When inserting, if the applications tag is already
recorded in list Lapp, it is accumulated over the original value.
Otherwise, the new key-value pair (B(·).Full_Key.App, B(·).Value) is
inserted.

In the most extreme case, list Lapp contains dl elements. Based
on this, we roughly estimate the time complexity of top-k appli-
cation query. When traversing the bucket array, the key-value pair
in each bucket is accumulated to the appropriate position in the
list Lapp. Therefore, the time complexity of key matching (i.e. the
process compared with the dl elements in the list one by one)
is O(dl). Traverse the bucket array and perform a total of dl key
matching processes, resulting in a total time complexity of �(d2l2).
The time complexity of the reordering and truncating process is
the same as that of the top-k flow query, i.e. �(dl · log(dl)). Overall,
the time complexity of querying the top-k applications is �(d2l2).

4.4. Top-k Heavy-sources
Top-k heavy sources mean the top-k sources who use the most
traffic among online requesters in the network. Some of the heavy
sources are people who like to watch movies, watch variety shows,
and chase TV series. Other heavy sources are organizations that
frequently download files on the Internet or frequently discuss
online, which generates a lot of P2P traffic or audio traffic.

Algorithm 5. Query for Top-k Heavy-sources

Input: Querying number K
Output: Top-k heavy-sources Lsource

1: Lsource = 0
2: for i = 1 to d do
3: for j = 1 to l do
4: Lsource ← (B(i, j).Full_Key.SIP, B(i, j).Value)
5: end for
6: end for
7: ReorderAndTruncate(Lsource)

8: return Lsource
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Algorithm 5 shows the query operation on top-k heavy-sources.
The query for top-k heavy-sources and the query for top-k heavy-
applications are both partial key queries, thus the query process
is similar, differing only in that the extracted partial key is SIP.
Similarly, the time complexity of the top-k heavy-sources query is
�(d2l2).

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of AppSketch com-
pared with the alternative methods in terms of accuracy and
efficiency. We first describe the real-world dataset used in our
experiments. Then, we introduced the evaluation metrics and
configurations of AppSketch in detail. We conducted all exper-
iments on a Linux platform with an Intel Core i9-9900KF CPU
(3.60GHz) and 32 GB DRAM memory. AppSketch and the alterna-
tive methods are implemented in C++ with publicly available at
https://github.com/houchangsheng/AppSketch.

5.1. Datasets
The datasets we used were collected from a university campus
network in Nanjing, Jiangsu Province of China. The datasets are
pcap files with raw packets that were captured from a core switch
of the campus network. The IP trace data were captured from
20:00 to 20:30 (i.e. one of the network traffic peaks of the day) on 26
November 2020. We divide the trace into five 6-min epochs, which
contain 49.4 million packets on average. Note that we did not use
open-source streaming datasets (e.g. CAIDA’s IP-trace data [47])
as these datasets do not contain the payload of the packets such
that the flow data can not be classified.

In order to accomplish real-time traffic analysis, the traffic
classification method we employ relies on information such as
port number, four-byte payload and flow statistics. It is important
to note that due to the nature of encryption, our method may
not be able to accurately identify all types of encrypted traffic.
Encryption can effectively conceal the payload contents, making
it challenging to classify such traffic accurately in real time. We
acknowledge this limitation and are actively exploring ways to
enhance our approach to handle encrypted traffic more effec-
tively. In the campus network dataset, the number of unidentified
encrypted TCP and UDP flows accounted for 0.7% and 3.8% of the
total flows, respectively. Therefore the unrecognized encrypted
traffic only takes up a tiny fraction (i.e. 4.5% in total) of the
dataset. For the sake of statistics and representation, we remove
this small portion of unidentified encrypted traffic from the
dataset.

5.2. Metrics
5.2.1. Jaccard Similarity
Jaccard Similarity is used to compare the similarity and differ-
ences between two limited sample sets, where the value closer to
one means a higher similarity. Given two flow sets A and B, their
Jaccard Similarity is formalized as

J(A, B) = |A ∩ B|
|A ∪ B| .

5.2.2. Normalized Discounted Cumulative Gain
Normalized Discounted Cumulative Gain is used to evaluate the
accuracy of the sorting results, referred to as NDCG for short.
NDCG considers the factors of sort order, which makes the top-
ranked items have higher gains and compromises the lower
ranked items. Let the relevance score of the item ranked i in the

list be r(i), then Discounted Cumulative Gain of the list containing
k items is formalized as

DCG =
k∑

i=1

r(i)
log2(i + 1)

.

NDCG is the normalized result of DCG.

5.2.3. AAE and ARE
Average Absolute Error (AAE) and Average Relative Error (ARE) are
used to evaluate the accuracy of the estimate of the aggregate
traffic on network flows and applications/sources traffic con-
sumption. They are formalized as follows:

AAE (Eresults) =
∑

∀x∈Eresults

∣∣Ṽ (x) − V (x)
∣∣

|Eresults|

and

ARE (Eresults) =
∑

∀x∈Eresults

|Ṽ(x)−V(x)|
V(x)

|Eresults| .

5.2.4. Average Processing Time
By comparing the average processing time, we evaluate the effi-
ciency of AppSketch and other alternative methods. The average
processing time refers to the average time it takes to process all
incoming flows (insert all flows or return all top-k queries) in each
epoch, which is specified as follows:

AverageProcessingTime = Total Processing Time
Number of Epochs

.

5.3. Parameter Configurations
We implemented other alternative methods by changing the
structure design and the updating strategy of the second stage
of AppSketch. We compare with the latest sketch technologies
used for heavy flow queries, including USS [42], DMatrix [44],
WavingSketch [41], HeavyGuardian [40] and Cold Filter [38].

Multiple key queries are implemented in three ways:

• Multiple-key sketch: Multiple-key sketch supports queries
for both full key and arbitrary partial keys. The multiple-key
sketch is carefully designed for partial key queries, returning
highly accurate partial key query results.

• Aggregating the single-key sketch: A single-key sketch is
designed for querying a specific full key. When the single-
key sketch returns the full key query results, the partial key
query results can be obtained by aggregating the values of
the relevant partial key. As single-key sketch is not dedicated
to partial key queries, its aggregated results may have poor
accuracy.

• Using separate single-key sketches: Consider a separate
statistical method and construct several single-key sketches.
Each sketch is only responsible for recording the statistical
results corresponding to a certain kind of key. Supposing〈
App, SIP

〉
is a full key, construct one single-key sketch for

full key
〈
App, SIP

〉
, and then construct one single-key sketch

for partial keys
〈
App

〉
and 〈SIP〉, respectively. When querying,

directly return the results from the corresponding sketch.

In our evaluation, we compared the accuracy of AppSketch
with alternative methods, including USS, DMatrix, WavingSketch,
HeavyGuardian and Cold Filter. Among these, AppSketch, USS and
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Figure 3. Jaccard Similarity (Left) and Normalized Discounted Cumulative Gain (Right) of the top-k heavy-flows query under varying memory
overhead.

DMatrix are multiple-key sketches capable of directly returning
partial key query results. On the other hand, WavingSketch,
HeavyGuardian and Cold Filter are single-key sketches, and we
compared the results of aggregating single-key sketch methods
versus using separate single-key sketch methods. The separate
single-key sketch methods are denoted as WavingSketch_S,
HeavyGuardian_S and ColdFilter_S.

To evaluate accuracy, we considered varying memory overhead
conditions. For sketches requiring multiple hash functions, we
set the number of hash functions to 2 (d = 2). The USS imple-
mentation we evaluated is optimized with an enhanced update
process utilizing a hash table and a double-linked list. DMatrix
determines the bucket to record flow statistics by performing
double hashing. To achieve more accurate partial key queries, we
adjusted the length and width ratios of the DMatrix based on the
ratio of the number of applications to the number of sources in the
dataset.

For the three single-key sketches, except for the number of
hash functions, we used the default parameter values provided in
the respective papers. In the case of separate single-key sketches,
we constructed individual sketches for heavy flows, heavy appli-
cations and heavy sources. The memory overhead was divided
such that the heavy flow sketch occupied one-third of the total,
and the remaining memory overhead was divided between the
heavy application sketch and the heavy source sketch in the ratio
of the number of applications to the number of sources. For the
top-k queries, we set k to 1000 for top-k flows, 100 for top-k
applications and 1000 for top-k sources.

5.4. Experimetal Results
5.4.1. Top-k Heavy-flows Query
We first evaluate the accuracy of top-k flows query for AppS-
ketch and other methods. We compared the Jaccard Similarity
and NDCG of top-k flows query and memory overhead changes
from 8 to 64 KB. Figure 3 shows the Jaccard Similarity and the
NDCG of top-k flows query. We can see that the Jaccard Similarity
coefficients and NDCG of all methods’ query results gradually
increase as the memory overhead increases. This is because, for
different methods, the relatively loose memory space makes hash
conflicts less frequent or allows sketches to record more heavy
flows. Clearly, AppSketch’s top-k query performance outperforms
the other methods. This indicates that AppSketch improves the
performance of partial-key queries without losing the perfor-
mance of full-key queries.

Next, we compare the average absolute error and the aver-
age relative error of top-k flows query. Figure 4 shows the aver-
age absolute error and the average relative error of top-k flows

query. We can see that as the memory overhead increases, the
average absolute error and the average relative error of all meth-
ods decrease gradually. This is reasonable, as for the same query
task, the more loose memory space allows less bucket competi-
tion between flows and thus less effect between flows. The aver-
age absolute error of AppSketch is minimum for different memory
overhead cases. However, the average relative error of AppSketch
is not optimal. This is because AppSketch aims to minimize the
estimation error of the subset sum, i.e.

∑
Key(V(Key) − V̂(Key))2.

Such a design naturally makes AppSketch primarily minimize the
absolute error rather than the relative error. Nevertheless, the
average relative error of AppSketch query results is suboptimal
when the memory overhead is greater than or equal to 24 KB.

5.4.2. Top-k Heavy-applications Query and Top-k
Heavy-sources Query
We compared the Jaccard Similarity and NDCG of top-k applica-
tions query and top-k sources query. Memory overhead changes
from 8 to 64 KB.

Figure 5 shows the Jaccard Similarity of top-k applications
query and top-k sources query, respectively. For all methods, we
can see that the trend of Jaccard Similarity coefficients for top-
k applications query and top-k sources query is consistent with
that of top-k flows query, gradually increasing with increasing
memory overhead. In top-k applications query results, we find
that AppSketch alternates with HeavyGuardian as the optimal
performer as the memory overhead varies. However, in top-k
sources query results, HeavyGuardian is far less accurate than
AppSketch. When the memory overhead is greater than or equal
to 48 KB, WavingSketch’s top-k sources query is more accurate
than AppSketch. This means that WavingSketch checks out more
heavy sources. However, as shown in Fig. 6, AppSketch’s perfor-
mance is optimal when considering the the sort order of top-k
sources.

Figure 6 shows the NDCG of top-k applications query and top-
k sources query, respectively. We can see that the NDCG of all
methods’ query results gradually increases as the memory over-
head increases, consistent with the top-k flows query. Meanwhile,
the performance of AppSketch is always optimal as the memory
overhead changes.

Next, we evaluate the estimation error of top-k applications
query and top-k sources query. Figure 7 and Fig. 8 show the
average absolute error and the average relative error of top-k
applications query and top-k sources query. We can see that in
most cases, AppSketch has the smallest average absolute error.
Only when the memory overhead is 8 KB, AppSketch is slightly
worse than ColdFilter_S, a separate single-key sketch method.
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Figure 4. Average Absolute Error (Left) and Average Relative Error (Right) of the top-k heavy-flows query under varying memory overhead.

Figure 5. Jaccard Similarity of the top-k heavy-applications query (Left) and top-k heavy-sources query (Right) under varying memory overhead.

Figure 6. Normalized Discounted Cumulative Gain of the top-k heavy-applications query (Left) and top-k heavy-sources query (Right) under varying
memory overhead.

This is because, when the memory space is compacted to 8 KB,
AppSketch no longer has an advantage over the strategy of
building a separate sketch for the partial key. Similar to the top-k
flows query, the average relative error of AppSketch is not optimal.
It is worth noting that for top-k applications query, the average
relative error of the methods, except for the separate single-
key sketch methods, shows a fluctuating trend as the memory
overhead changes. This is due to the fact that there are only 123
applications in the dataset compared with a large number of
sources (reaching more than 30 000). In this case, changing the
recorded key probabilistically can easily affect the query results
of a single partial key.

5.4.3. Update and Query Efficiency
Figure 9 shows the average time costs of the update and query
processes in AppSketch and other alternative methods.

Note that as the memory overhead increases, there is a
trend toward a gradual decrease in the update time of all
methods. This is reasonable because the larger memory overhead

results in fewer hash conflicts when updating in all methods,
reducing the time required to execute additional processing
mechanisms due to hash conflicts. In addition, as the memory
overhead increases, there is a slight fluctuation (i.e. as the mem-
ory overhead increases, the update time also slightly increases)
in the update time of methods such as AppSketch, DMatrix and
ColdFilter, which is related to the basic principles of the relevant
methods. For AppSketch, as memory overhead increases, the
probability of two different keys mapping to the same bucket
decreases, while it increases the possibility of the Full Key field
of the smallest bucket fluctuating repeatedly. DMatrix is also in
the dilemma of continuously updating candidate key fields. As
the memory overhead increases, it becomes more difficult for
ColdFilter to be filled with flows. However, when the two-layer
data structure of ColdFilter is not fully filled, each update will
perform more judgment and comparison operations.

As the memory overhead increases, the query time of all meth-
ods gradually increases, which is as expected. When the memory
overhead increases, all methods can accommodate more heavy
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Figure 7. Average Absolute Error of the top-k heavy-applications query (Left) and top-k heavy-sources query (Right) under varying memory overhead.

Figure 8. Average Relative Error of the top-k heavy-applications query (Left) and top-k heavy-sources query (Right) under varying memory overhead.

Figure 9. The average time cost of updating and querying process in AppSketch and other methods.

flows, resulting in more protracted times for querying all heavy
flows (or finding top-k flows from heavy flows). In all cases,
AppSketch has the least insert time, although its queries are
not the fastest. However, we note that the insert time ranges
from 3.8 × 105 to 2.1 × 106 ms, which is a very large order of
magnitude compared with the query time that takes a maximum
of 540 ms. Compared with other methods, AppSketch can store
network flow information more quickly and conveniently, which
is extremely important in online real-time processing, and the
under-performance in query time is acceptable.

5.4.4. Sensitivity
We evaluate the sensitivity of AppSketch and other methods
(DMatrix, ColdFilter) that require multiple hash functions to the
number of hash functions in this section. We fixed the memory
overhead to 64 KB and varied the number of hash functions d from
2 to 6.

Table 1 shows the Jaccard Similarity and the NDCG of several
methods under varying the number of hash functions. We can

see that, as d increases, the Jaccard Similarity and NDCG of all
methods remain relatively stable, except for DMatrix, which
exhibits severe fluctuations. This is because, for AppSketch and
ColdFilter, more hash functions reduce the mutual influence
between different flows, while suffering from other performance
reductions due to unchanged memory overhead. For AppSketch,
fixed memory overhead confines the total number of buckets
d × l, and as d increases, l correspondingly decreases, which
increases the probability of different keys mapping to the same
bucket (i.e. increases hash conflicts), resulting in a decrease in
estimation performance. AppSketch, therefore, does not benefit
significantly from increasing d. For DMatrix, due to its three-
dimensional structure, an increase in d results in an increase
in the number of layers, and the estimation performance
on the two-dimensional table of each layer is significantly
reduced. It is difficult to determine whether the advantage of
reducing flow mutual influence can fully compensate for the
impact of performance degradation in two-dimensional table
estimation.
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Table 1. Jaccard Similarity and Normalized Discounted Cumulative Gain of the top-k queries under varying the number of hash
functions.

Query Method Jaccard Similarity Normalized Discounted Cumulative Gain

d = 2 d = 3 d = 4 d = 5 d = 6 d = 2 d = 3 d = 4 d = 5 d = 6

Top-k Heavy-flows AppSketch 0.948 0.976 0.985 0.989 0.993 0.971 0.987 0.992 0.993 0.995
DMatrix 0.573 0.523 0.584 0.432 0.281 0.715 0.687 0.739 0.594 0.444
ColdFilter 0.563 0.592 0.606 0.606 0.606 0.717 0.728 0.727 0.727 0.727
ColdFilter_S 0.273 0.279 0.282 0.282 0.282 0.467 0.472 0.470 0.470 0.470

Top-k Heavy-applications AppSketch 0.480 0.464 0.458 0.440 0.469 0.704 0.699 0.696 0.685 0.706
DMatrix 0.478 0.272 0.312 0.271 0.183 0.680 0.517 0.557 0.498 0.397
ColdFilter 0.163 0.162 0.162 0.162 0.162 0.387 0.384 0.382 0.382 0.382
ColdFilter_S 0.099 0.099 0.099 0.099 0.099 0.277 0.277 0.277 0.277 0.277

Top-k Heavy-sources AppSketch 0.883 0.925 0.939 0.950 0.960 0.936 0.961 0.969 0.974 0.978
DMatrix 0.552 0.471 0.531 0.398 0.260 0.707 0.651 0.703 0.575 0.441
ColdFilter 0.408 0.425 0.434 0.434 0.434 0.606 0.617 0.619 0.619 0.619
ColdFilter_S 0.248 0.254 0.256 0.256 0.256 0.446 0.451 0.451 0.451 0.451

Table 2. Average Absolute Error and Average Relative Error of the top-k queries under varying the number of hash functions.

Query Method Average Absolute Error(×107) Average Relative Error

d = 2 d = 3 d = 4 d = 5 d = 6 d = 2 d = 3 d = 4 d = 5 d = 6

Top-k Heavy-flows AppSketch 0.013 0.003 0.002 0.002 0.001 0.058 0.024 0.015 0.012 0.009
DMatrix 0.130 0.125 0.097 0.311 0.526 0.320 0.416 0.368 0.647 0.987
ColdFilter 1.770 1.772 1.774 1.774 1.774 0.992 0.993 0.994 0.994 0.994
ColdFilter_S 1.771 1.774 1.775 1.775 1.775 0.993 0.994 0.995 0.995 0.995

Top-k Heavy-applications AppSketch 0.072 0.023 0.020 0.022 0.020 0.763 1.037 1.225 0.895 0.684
DMatrix 1.052 0.892 0.655 1.346 2.317 0.699 0.870 168.0 168.3 4.816
ColdFilter 18.07 18.09 18.11 18.11 18.11 0.997 0.998 0.999 0.999 0.999
ColdFilter_S 0.461 0.461 0.461 0.461 0.461 48.74 48.74 48.74 48.74 48.74

Top-k Heavy-sources AppSketch 0.018 0.006 0.004 0.004 0.003 0.128 0.074 0.057 0.049 0.043
DMatrix 0.126 0.124 0.096 0.258 0.458 0.397 0.497 0.453 0.684 1.247
ColdFilter 1.787 1.789 1.791 1.791 1.791 0.993 0.994 0.995 0.995 0.995
ColdFilter_S 1.789 1.791 1.793 1.793 1.793 0.993 0.995 0.996 0.996 0.996

In addition, there is a slight decrease in the performance
of AppSketch and ColdFilter for top-k heavy-applications query.
Since the dataset only contains 123 applications, one heavy appli-
cation may correspond to a number of full key flows. After aggre-
gation, the impact of increased hash conflicts is amplified and
presented on the top-k heavy-applications query results. Overall,
as d increases, the performance of AppSketch remains stable
while outperforming all other methods.

Table 2 shows the average absolute error and average relative
error of several methods under varying the number of hash func-
tions. It can be seen that AppSketch and ColdFilter exhibit stability
in estimation errors, while DMatrix still f luctuates significantly.
For the same reason, increasing the number of hash functions also
affects the performance of several methods in estimation error. In
most cases, the average absolute error and average relative error
of AppSketch are the minimum. For the top-k heavy-applications
query, the average relative error of AppSketch is slightly worse
than that of DMatrix and ColdFilter. The reason is that AppSketch
aims to minimize the estimation error of the subset sum. Such a
design naturally makes AppSketch primarily minimize the abso-
lute error rather than the relative error.

Table 3 shows the average time cost of the updating and query-
ing process of several methods under varying the number of hash

functions. As d increases, the update time of several methods also
increases, since this results in more hash operations. The query
time of AppSketch and ColdFilter remains almost unchanged,
while DMatrix shows a significant decrease. Increasing d does not
affect the heavy-flows that AppSketch and ColdFilter can accom-
modate, while seriously compresses the heavy-flows that DMatrix
can accommodate, and its query time also decreases as the num-
ber of queried flows decreases. The update efficiency of AppS-
ketch is the highest, which is extremely important in online real-
time processing, although the query efficiency is slightly poor.

Next, we evaluate the impact of the number of hash func-
tions and memory overhead on AppSketch. Table 4 shows the
Jaccard Similarity and the NDCG of AppSketch under varying the
number of hash functions and memory overhead. It can be seen
that increasing memory overhead can significantly improve the
estimation accuracy performance of AppSketch compared with
applying more hash functions. Furthermore, increasing d actually
reduces the performance of top-k heavy-applications query of
AppSketch.

Table 5 shows the average absolute error and average relative
error of AppSketch under varying the number of hash func-
tions and memory overhead. In top-k heavy-flows and top-k
heavy-sources queries, as memory overhead increases or the
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Table 3. The average time cost of the updating and querying process under varying the number of hash functions.

Method Insert Time (×105 ms) Query Time (ms)

d = 2 d = 3 d = 4 d = 5 d = 6 d = 2 d = 3 d = 4 d = 5 d = 6

AppSketch 3.591 4.473 5.075 5.704 6.157 526.36 508.44 510.30 506.37 511.53
DMatrix 6.942 9.454 11.825 14.338 16.726 323.31 191.71 237.67 193.77 127.79
ColdFilter 5.575 7.000 8.172 8.188 8.165 110.4 110.95 111.58 111.55 110.67
ColdFilter_S 19.663 23.408 26.886 26.821 26.946 62.172 61.899 62.665 62.362 62.947

Table 4. Jaccard Similarity and Normalized Discounted Cumulative Gain of the top-k queries in AppSketch under varying memory
overhead and the number of hash functions.

Query Memory
Overhead

Jaccard Similarity Normalized Discounted Cumulative Gain

d = 2 d = 3 d = 4 d = 5 d = 6 d = 2 d = 3 d = 4 d = 5 d = 6

Top-k Heavy-flows 24 KB 0.730 0.802 0.825 0.846 0.850 0.844 0.890 0.904 0.917 0.920
32 KB 0.826 0.880 0.902 0.924 0.935 0.904 0.936 0.949 0.960 0.965
40 KB 0.871 0.925 0.947 0.963 0.968 0.929 0.960 0.972 0.980 0.983
48 KB 0.906 0.954 0.970 0.978 0.984 0.949 0.976 0.984 0.988 0.991
56 KB 0.922 0.965 0.979 0.986 0.986 0.958 0.981 0.988 0.992 0.992
64 KB 0.948 0.976 0.985 0.989 0.993 0.971 0.987 0.992 0.993 0.995

Top-k Heavy-applications 24 KB 0.297 0.272 0.271 0.277 0.286 0.546 0.522 0.525 0.533 0.543
32 KB 0.316 0.336 0.341 0.327 0.330 0.572 0.586 0.595 0.581 0.586
40 KB 0.372 0.370 0.376 0.373 0.364 0.620 0.622 0.629 0.625 0.620
48 KB 0.388 0.419 0.385 0.394 0.374 0.633 0.660 0.638 0.646 0.629
56 KB 0.435 0.452 0.454 0.409 0.427 0.676 0.670 0.691 0.660 0.674
64 KB 0.480 0.464 0.458 0.440 0.469 0.704 0.699 0.696 0.685 0.706

Top-k Heavy-sources 24 KB 0.623 0.673 0.698 0.707 0.714 0.773 0.812 0.829 0.835 0.839
32 KB 0.713 0.766 0.788 0.806 0.803 0.837 0.871 0.884 0.895 0.896
40 KB 0.779 0.832 0.841 0.865 0.871 0.877 0.910 0.916 0.929 0.933
48 KB 0.829 0.871 0.899 0.903 0.912 0.906 0.932 0.947 0.950 0.955
56 KB 0.847 0.907 0.923 0.941 0.941 0.917 0.951 0.959 0.969 0.969
64 KB 0.883 0.925 0.939 0.950 0.960 0.936 0.961 0.969 0.974 0.978

number of hash functions increases, the estimation error of AppS-
ketch gradually decreases. In the top-k heavy-applications query,
the estimation error fluctuates within a small range, because one
application may cover multiple different flows, and the heavy-
applications query aggregates and amplifies the estimation error.
Overall, expanding memory overhead or applying more hash
functions does not result in poor performance of AppSketch in
terms of estimation error, and in some cases, leads to better
performance.

Table 6 shows the average time cost of the updating and query-
ing process of AppSketch under varying the number of hash func-
tions and memory overhead. As the memory overhead increases,
the update time of AppSketch maintains a relatively stable state
with a downward trend, while the query time gradually increases,
which is a negligible order of magnitude compared with the
update time. As d increases, the update time of AppSketch gradu-
ally increases, and the query time is relatively stable.

Overall, the high performance of AppSketch relies more on
loose memory space constraints and is not sensitive to the num-
ber of hash functions. Specifically, applying more hash functions
leads to increased update time, which is not conducive to online
real-time flow processing.

5.4.5. Memory Overhead
We only analyze the memory overhead of AppSketch. When the
memory overhead is 64KB, the NDCG of AppSketch reaches 0.97,

0.71 and 0.94 for top-k flows query, top-k applications query and
top-k sources query, respectively. As the memory overhead gradu-
ally increases, the NDCG gradually approaches to 1; however, this
will crowd out available memory for other systems or functions
on the network device. In order to fit into the compact memory of
the network device and to achieve real-time traffic analysis, it is
suitable to request 64 KB of memory for AppSketch.

6. USE CASE
We analyzed the online behavior of college students using the
stream data collected on the university campus network with
AppSketch. The dataset was divided into five epochs, where each
epoch contains a 6-min interval. For each epoch, we analyzed the
top-k applications and top-k sources.

First, we analyzed the top-k application. Figure 10 shows the
traffic size of the top-10 applications for five epochs and the
traffic size change of applications that persist across five epochs.
Note that HTTPS and HTTP applications took up most of the
traffic in each epoch where HTTP and HTTPS are the primary
protocol used for web browsing. However, HTTP/HTTPS protocol
is also used by other applications which want to take advantage
of the ubiquity features of the web browser. Such applications
usually set a specific string for the User-Agent or Content-Type
field so that the application software can identify their particular
traffic. For example, Flash video streams will set the Content-Type
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Table 5. Average Absolute Error and Average Relative Error of the top-k queries in AppSketch under varying memory overhead and the
number of hash functions.

Query Memory
Overhead

Average Absolute Error (×105) Average Relative Error

d = 2 d = 3 d = 4 d = 5 d = 6 d = 2 d = 3 d = 4 d = 5 d = 6

Top-k Heavy-flows 24 KB 7.979 3.767 2.755 2.110 1.762 0.313 0.214 0.180 0.152 0.134
32 KB 4.241 1.976 1.193 0.937 0.815 0.195 0.120 0.090 0.070 0.060
40 KB 3.400 1.040 0.656 0.494 0.390 0.137 0.070 0.049 0.036 0.030
48 KB 2.239 0.667 0.360 0.284 0.246 0.095 0.045 0.028 0.022 0.018
56 KB 1.788 0.518 0.307 0.202 0.191 0.081 0.032 0.021 0.015 0.014
64 KB 1.313 0.336 0.195 0.167 0.135 0.058 0.024 0.015 0.012 0.009

Top-k Heavy-applications 24 KB 19.77 8.654 8.029 5.759 5.067 1.167 0.871 0.861 0.943 0.779
32 KB 9.846 5.843 4.124 3.369 3.381 0.722 1.196 1.094 1.510 2.573
40 KB 10.39 3.996 3.030 2.461 2.376 1.040 1.784 0.740 1.611 0.782
48 KB 9.075 3.607 2.294 2.242 1.868 0.978 2.983 0.762 0.642 0.699
56 KB 6.828 3.068 2.124 1.958 2.319 0.687 0.912 2.325 0.639 0.710
64 KB 7.150 2.350 2.036 2.184 1.952 0.763 1.037 1.225 0.895 0.684

Top-k Heavy-sources 24 KB 8.939 4.908 3.766 3.169 2.811 0.504 0.414 0.361 0.342 0.330
32 KB 5.060 2.800 1.971 1.656 1.546 0.340 0.259 0.228 0.201 0.189
40 KB 4.166 1.673 1.223 1.005 0.873 0.253 0.180 0.153 0.128 0.118
48 KB 2.863 1.132 0.751 0.663 0.589 0.192 0.126 0.097 0.092 0.080
56 KB 2.345 0.905 0.623 0.472 0.443 0.173 0.093 0.077 0.060 0.058
64 KB 1.755 0.625 0.433 0.380 0.337 0.128 0.074 0.057 0.049 0.043

Table 6. The average time cost of the updating and querying process for AppSketch under varying memory overhead and the number
of hash functions.

Memory
Overhead

Insert Time (×105 ms) Query Time (ms)

d = 2 d = 3 d = 4 d = 5 d = 6 d = 2 d = 3 d = 4 d = 5 d = 6

24 KB 4.000 4.933 5.783 6.508 7.169 216.762 215.451 209.924 212.094 211.689
32 KB 3.568 4.275 4.994 5.739 6.353 267.499 253.081 253.915 252.856 255.795
40 KB 3.726 4.531 5.247 5.978 6.549 337.203 312.91 314.536 318.01 314.641
48 KB 3.660 4.561 5.195 5.835 6.564 386.689 378.942 366.54 366.376 372.191
56 KB 3.677 4.470 5.021 5.738 6.254 492.217 477.423 469.982 468.842 464.202
64 KB 3.591 4.473 5.075 5.704 6.157 526.36 508.44 510.30 506.37 511.53

to ‘video/flv’. Unfortunately, AppSketch cannot distinguish such
applications from regular HTTP traffic because it only checks the
first four bytes of the payload of packets. Therefore, HTTP/HTTPS
traffic is an aggregation of many application traffic (e.g. video
streams) in this case study. The QQLive is the second most traffic-
consuming application, which is a video application of Tencent. In
addition, we can see that YY_UDP, the traffic of YY live broadcast,
is listed in the top-10 applications. This suggests that watching
online videos or live broadcasts is very common among college
students. There are also several applications involving P2P trans-
mission. The STUN protocol stands for Simple Traversal of User
Datagram Protocol (UDP) through Network Address Translators
(NAT). This protocol is used in several different network imple-
mentations (e.g. VoIP). STUN is used to resolve the public IP of
a device running behind a NAT, to solve problems such as one-
way audio during a phone call or phone registration issues when
trying to register to a VoIP or an IP PBX residing on a different
network. Other P2P applications such as BitTorrent and Xunlei
also consumed a lot of traffic within 30 min.

We analyzed the applications that continually appear in five
epochs. Firstly, HTTPS and HTTP applications, which accounts
for a relatively large proportion of all application traffic, contin-
ually appear in five epochs, and its traffic size shows significant

differences among different epochs. There are two reasons for the
fluctuation of HTTPS/HTTP traffic size: a large number of users
widely use web browsers to access web pages, generating varying
degrees of traffic at different time periods; HTTPS/HTTP protocol
is used by other applications (such as video streaming applica-
tions), which generate traffic of different sizes due to inconsistent
runtime. Secondly, QQLive and YY_UDP are typical audio and
video traffic, characterized by roughly the same traffic size and
persistence across different epochs. There are differences in the
amount of traffic generated by different audio/video applications
in each epoch. Furthermor, there are two P2P applications (STUN
and BitTorrent_UDP) that maintain stable traffic sizes across
multiple epochs, but have smaller traffic volume compared to
video traffic.

Then, we analyzed top-k sources. Figure 11 shows the traffic
size of the top five sources in each epoch. We observed a total
of 17 different heavy sources in five epochs, where most of the
top sources have a short duration of data transmission, while a
small number of sources continuously transmit a large amount of
traffic across multiple epochs, e.g. Source7 lasts 4 epochs. Table 7
shows the applications used by top five sources. HTTPS and HTTP
traffic are still dominant. We obtained some speculative results
of the traffic carried on HTTP by analyzing the destination of the
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Figure 10. Top 10 applications traffic size of five epochs (Left) and the traffic size change of applications that persist across five epochs (Right).

Table 7. The proportion of applications used by top five sources

Applications Size Proportion

HTTPS 11.61GB 61.1513%
HTTP 7.30GB 38.4638%
QQLive 59.04MB 0.3109%
Fliggy 4.47MB 0.0236%
SSL/TLS 4.19MB 0.0220%
BaiduYunP2P 3.68MB 0.0194%
BitTorrent 1.05MB 0.0055%
QUIC 112.49KB 0.0006%
Taobao 97.78KB 0.0005%
ApplePush 87.32KB 0.0005%
Others 347.59KB 0.0018%

network flows, as shown in Table 8. First of all, we found that
some heavy sources interact with data centers, including CERNET
data centers, Amazon data centers, Qingdao Jiahua data centers,
etc., which may be involved in the experimental data collection
behavior of some research teams in the university. Secondly, some
heavy sources communicate to the cloud resources of Internet
companies (such as Alibaba, Huawei, Google and Kingsoft). Col-
lege students also obtain resources from CDN nodes, including
CND service providers such as EdgeCast, Wangsu and Akamai.
Some heavy sources send data to destinations located in Wuhan
University of Technology and Hubei University of Technology,
which may be resource sharing among universities. Note that
QQLive occupies 0.3% of the traffic consumed by heavy sources
(as Table 7). Through analyzing top-k sources one by one, we
found that Source8 (121.∗.∗.84) was using this application during
this period.

The use case of campus network traffic analysis illustrates that
AppSketch is effective and can be used to analyze traffic from
different views (applications or sources), find heavy flows, heavy
applications and heavy sources in the network. For different net-
work management tasks, analysis results can help make decisions
and optimize network performance.

7. CONCLUSION
Real-time traffic analysis is crucial for efficiently allocating net-
work resources and providing optimal services. However, achiev-
ing real-time, fine-grained traffic analysis can be challenging. In
this work, we introduce AppSketch, a novel sketch framework
specifically designed for fast and accurate application traffic

Table 8. The destination of heavy sources’ HTTP traffic

Category Destinations

Data Center CERNET, Amazon, Qingdao Jiahua, Linode
Cloud Computing Center Alibaba, Huawei, Google, NetEase, Baidu,

Kingsoft
Content Delivery Network EdgeCast, Wangsu, Akamai
University Wuhan University of Technology, Hubei

University of Technology
Internet Company Baidu, Huawei, Microsoft
Network Operator China Telecom, China Mobile, China

Unicom
Other —

Figure 11. Top five sources traffic size of five epochs.

analysis. AppSketch offers a lightweight and real-time solution for
analyzing network traffic and capturing detailed traffic statistics.
Our framework employs a two-stage approach. In the first stage,
network traffic is classified based on application types. Then,
in the second stage, we utilize a multiple-key sketch to gather
application-specific statistics. Through extensive experiments, we
have validated that AppSketch outperforms existing solutions in
terms of accuracy and efficiency. One advantage of AppSketch
is its insensitivity to parameters such as the number of hash
functions. Instead, it relies more on available memory space. With
a memory overhead of 64 KB, AppSketch performs sufficiently and
is suitable for network devices with limited memory capacity.

Furthermore, we have demonstrated the effectiveness of
AppSketch through its application on real campus network
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data streams. The results obtained from our experiments on
the campus network data reveal interesting insights. We have
identified HTTP/HTTPS and audio/video applications as the
dominant heavy applications within the network. Furthermore,
our analysis indicates that heavy sources primarily consist
of users obtaining research data from the data center. These
findings contribute to a deeper understanding of application
traffic patterns and resource utilization within the network.

While AppSketch provides a significant step forward in applica-
tion traffic analysis, there are several potential means for future
research. One potential direction is to enhance AppSketch’s capa-
bility to handle encrypted traffic, which poses a challenge due
to the inability to inspect payload contents. Additionally, further
investigation into optimizing the performance and resource uti-
lization of AppSketch in large-scale network environments would
be beneficial.
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